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Targeted mixing in an array of alternating vortices
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Transport and mixing properties of passive particles advected by an array of vortices are investigated.
Starting from the integrable case, it is shown that a special class of perturbations allows one to preserve
separatrices which act as effective transport barriers, while triggering chaotic advection. In this setting, mixing
within the two dynamical barriers is enhanced while long range transport is prevented. A numerical analysis of
mixing properties depending on parameter values is performed; regions for which optimal mixing is achieved
are proposed. Robustness of the targeted mixing properties regarding errors in the applied perturbation are
considered, as well as slip/no-slip and/or boundary conditions for the flow.
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I. INTRODUCTION

Since its uncovering, chaotic advection [1,2] has drawn
much attention as its consequences on both transport and
mixing properties of a given flow are fundamental. This phe-
nomenon is closely related to Lagrangian chaos, and trans-
lates the fact that despite the laminar character of the flow
Lagrangian, trajectories of a fluid or passive particles may
end up being chaotic. In this setting, transport and mixing
properties are drastically changed [3-6]. In chaotic regions
of the flow, mixing induced by molecular diffusion becomes
often negligible in regards to the mixing induced by the dy-
namics. Regarding transport properties, the triggering of cha-
otic advection also plays a key role. Indeed, in contrast to the
fully predictive integrable situation, tackling transport prop-
erties of individual passive particles is subject to sensitivity
to initial conditions and implies a necessary probabilistic ap-
proach. This leads in some cases to a diffusion equation with
an enhanced diffusion coefficient when compared to the mo-
lecular diffusion one [7], but also to non-Gaussian properties
of transport (see [8,9]), as for instance, superdiffusive trans-
port. One then often resorts to modeling transport using a
fractional diffusion equation [10]. All these properties have
drawn much attention not only for its impact on geophysical
flows and magnetized plasmas [9,11-18], but also because of
the potential applications of its enhanced mixing properties
in chemical engineering and microfluidic devices [19,20].

Lagrangian chaos in two-dimensional incompressible
flows is triggered generically when the flow becomes time
dependent [2,21-24]. The trajectories of fluid particles or
passive tracers are not confined on field lines and chaos ap-
pears. For these type of flows the dynamics of fluid particles
is Hamiltonian, with the stream function acting as the Hamil-
tonian. The canonically conjugate variables are the space
variables, and the phase space is the two-dimensional physi-
cal space. This particularity allows direct visualization of
phase space in experiments, making it a test bed used to
confront theoretical results on Hamiltonian dynamics with
experiments. More specifically, passive tracer dynamics be-
long to the class of Hamiltonian systems with 1.5 degrees of
freedom. General mixing and transport properties of these
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systems are now well understood, especially when the time
dependence is periodic and Poincaré maps are computed to
analyze phase space topology. Typically the dynamics is not
ergodic: A chaotic sea surrounds various islands of quasip-
eriodic dynamics. The anomalous transport properties and
their multifractal nature are then linked to the existence of
islands and the phenomenon of stickiness observed around
them [25,26], while mixing is enhanced in the chaotic sea
but must rely on molecular diffusion in regular regions.

In most studies regarding this type of phenomena, the
time-dependent perturbation is given a priori or self-
generated. Transport and mixing properties are thoroughly
investigated and general laws are extrapolated or the origin
of phenomena explained (see [26-29]). The influence of
phase space topology and its understanding is clear, and can
be used to explain synchronization phenomena [30]. How-
ever one is still somewhat constrained by an a priori im-
posed time dependence. Recently, approaches of tailoring
specific perturbations in order to modify phase space have
been proposed [31,32] and a specific one has been applied to
an array of alternating vortices [33]. Due to the strong influ-
ence of invariant tori forming regular islands on global trans-
port and mixing properties, acting on phase space topology
even locally (for instance, by building a transport barrier
[31,33] or by destroying regular islands [33]) can have
strong consequences.

In this paper we address the problem of targeted mixing, a
work already started in Ref. [33]. We refer to targeted mixing
as the process of leveraging only one of the consequences of
chaotic advection, namely enhancing mixing, while contain-
ing particle transport within a finite subdomain of phase
space. For this purpose we consider the dynamics of passive
particles in an array of alternating vortices and tailor phase
space in order to achieve the desired property. From the ex-
perimental point of view, acting on phase space is often not
easy, because one must act also on particle momenta in gen-
eral. However, this may be less of a problem in the context
of two-dimensional incompressible flows due to the duality
between physical space and phase space. Moreover mixing
within flows has a tremendous number of applications. The
primary interest in the flow of an array of alternating vortices
resides in the fact that being generated by quite a few hydro-

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.76.046217

BACHELARD et al.

dynamic instabilities, it may be considered as one of the
founding bricks of turbulence. This flow is easily accessible
to experimentalists, for instance, using magnetohydrodynam-
ics techniques similar to Rayleigh-Bénard convection with a
control over the flow [21-23]. As such, understanding its
influence on the advection of passive or active quantities is
considered a necessary first step in order to uncover the dif-
ferent mechanisms governing transport in general or
reaction-diffusion processes such as front propagation in tur-
bulent flows [34-38]. The stream function which models an
experiment in a channel with slip boundary conditions is

W(x,y) =sinx sin y, (1)

where the x direction is the horizontal one along the channel
and the y direction is the bounded vertical one. The dynam-
ics given by the stream function (1) is integrable and passive
particles follow the stream lines, no mixing occurs. In the
experiments, a typical perturbation f(x,y,?) is introduced as
a time-dependent forcing in order to trigger chaotic advec-
tion and then to study the resulting transport and mixing
properties. More precisely we consider perturbations which
modify the stream function as

\Pc(xayat) =‘I’0(x+f7)’)- (2)

We show how to identify the perturbations f which pre-
serve transport barriers and at the same time, enhance mixing
properties.

The paper is organized as follows: In Sec. II we recall
some basic notions of passive scalar dynamics in two-
dimensional incompressible flows. Then we give a short re-
view of possible Hamiltonian control techniques we use in
order to tailor a perturbation best suited for our needs. In
Sec. III, we apply these techniques to flows modeled by the
stream function (1). First we derive the perturbation needed
in order to build virtual barriers along the channel and thus
limit transport within only a small region of phase space.
Then among all possible perturbations, we define criteria
needed to achieve good mixing within the two barriers and
analyze for which perturbations and parameters these criteria
are satisfied. Then, we consider the robustness of the pro-
posed perturbation with respect to a simpler time depen-
dence, slip boundary conditions, three-dimensional effects
and molecular diffusivity. After showing the efficiency of
such perturbations in enhancing mixing, we analyze the set
of parameters for which efficient mixing is expected using
the residue method.

II. A STRATEGY FOR MIXING INSIDE A CELL

The term advection by definition, relates to the action of
being moved by and with a flow. In mathematical terms, this
translates in the general equation for a passive tracer,

I =v(r,1), (3)

where r locates the passive tracer in space, v corresponds to
the velocity field, and r corresponds to the time derivative of
r. In the case of two-dimensional incompressible flows, the
study of the field can be described by a scalar function, i.e.,
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FIG. 1. Schematic representation of the channel with a transport
barrier located at x=¢(y).

the stream function ¢(r,r). The velocity field is then ob-
tained by v=curl(¢Z), where Z is the unit vector normal to
the flow. Equation (3) is rewritten using the stream function
and exhibits a Hamiltonian structure for the flow,

N S 4
X=="— Y=""» (4)
dy ox
where (x,y) corresponds to the coordinates of the tracer on
the plane. The space variables (x,y) are canonically conju-
gate for the stream function W which acts as the Hamiltonian
of the system. Hence, the phase space is formally the two-
dimensional physical space (with the addition of time).

In this section, our aim is to briefly recall some Hamil-
tonian techniques allowing to some extent, to tailor phase
space by adjusting appropriately the perturbation f as in Eq.
(2) and its parameters. These techniques will be subsequently
used to achieve targeted mixing for the considered flows,
namely construct a perturbation in order to obtain optimal
chaotic mixing in a localized region of phase space. First we
construct a family of perturbations which create transport
barriers, then we use the residue method [32] in order to find
optimal mixing regimes in parameter space after the barriers
have been created.

A. Constructing a perturbation with a barrier

We consider a generic time-independent stream function
(Hamiltonian) W,(x,y) describing a fluid in a two-
dimensional channel of height 7, i.e., (x,y) € R X[0, 7] (see
Fig. 1). We assume that there exists an invariant curve which
prevents the advection of tracers from the left to the right of
that curve. We denote the equation of this curve x=¢(y). The
invariance condition [x=¢’(y)y if x=¢(y)] of tracers on this
curve translates into

Wole(y),y]=const,

for all y € [0, 7r] by using Egs. (4). In the case of Eq. (1), this
transport barrier is a heteroclinic connection between two
hyperbolic fixed points located at y=0 and y=.

In order to enhance mixing, the system is perturbed by a
time-dependent forcing (depending also on x and y in gen-
eral). As a consequence, its dynamics is generically no
longer integrable, and chaotic trajectories fills portions of the
channel (these are parts where mixing occurs). However, as a
side effect, the transport barrier is broken and trajectories
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start to diffuse along the channel (in the x direction).

In the following, we propose to design a time-dependent
forcing of the flow described by W, which preserves the
transport barrier as well as the chaotic mixing. The aim is to
find an appropriate forcing which preserves a bounded do-
main of the channel with an enhanced chaotic mixing inside.
This domain can be bounded by two dynamical barriers as
mentioned above.

A main practical requirement is that the forcing should be
as simple as possible to be implemented. Consequently, we
start by investigating perturbations which only depends on y
and ¢. Furthermore, for practical reasons, we restrict the per-
turbations to time-periodic ones, and the period is chosen as
2 without loss of generality. More precisely, we search for
a perturbation f(y,f) which modifies the stream function W
into

W (x,y,1) = Wolx + f(y,1),y]. (5)

In order to simplify the computations, we perform a generic
translation in x (which corresponds to a canonical transfor-
mation in the Hamiltonian setting),

¥=x+d,B(.1),

y=y,
where B is a function to be specified later. In the new vari-

ables X and y, the dynamics is described by the stream func-
tion

U (%,5.0) = Vo[ + f(7,0) - 0,8(5.0),7] - 0,8(3.1).

In order to have an invariant curve acting as a barrier in the
channel, the perturbation f is such that the stream function
evaluated at x=¢(y) is only a function of time, since the
barrier is time independent (in the moving frame). For sim-
plicity, we consider solutions for which the stream function
vanishes,

Yoley) + f(y.0) = ,8(y.1).y] - d,8(y,0) =0,  (6)

which is a single equation with two unknown functions, 8
and f. In principle, there are an infinite set of solutions. De-
pending on other requirements, some solutions are more ap-
propriate than others. In the following, we choose

JO.0 + @(y) = 0,8(y,1) = D(1),
where ®(¢) is any function of ¢. Equation (6) implies
Ov)tB(yJ‘) = \IIO[(D(I)»}]] .

This equation has solutions provided that the mean value of
Wo[d(r),y] with respect to time vanishes for all y. This
guides the choice for the function ®. A possible solution for

Bis
Bly.1) ="'V [D(1),y],

where

To(y.0)= 2, —vk.(y) e,
k=0 ik
ikt

for v=3,v,(y)e’™. The perturbation f is given by
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J.0) =®@) = @(y) + [, W[ D(1),y]. (7)

The stream function W, given by Eq. (5) has an invariant
curve whose equation is

x=@(y) =T, Wo[®(),y]. (8)

There exist many more solutions f than the one indicated
here. These solutions are obtained by using more complex
translation functions B. However, they contain a lot more
Fourier modes in y, which make them more difficult to
implement for the cases we consider in Sec. III. We notice
that the perturbation f given by Eq. (7) as well as the equa-
tion of the transport barrier (8) are parametrized by a time-
periodic function ®(z). This function @ is in general param-
etrized by essentially two parameters, its frequency and its
amplitude. In parameter space, the dynamics characterized
by the stream function V¥, exhibit drastically different behav-
iors depending on the values of parameters. In what follows,
we use periodic orbits to determine the regions in parameter
space where complete mixing inside the transport barriers
occurs. This method is briefly explained in the next section.

B. Periodic orbit analysis

The dynamics of the perturbed flow as the one given by
the stream function W, can be investigated by looking at the
(linear) stability of specific periodic orbits, using indicators
such as the residue. In order to “control” the flow, one can
monitor the residues by varying the parameters of the system
(like the frequency and the amplitude of the forcing), until
specific bifurcations occur. In particular, the residue method
allows one to predict the break up (or creation) of invariant
tori, which entails an enhancement (or reduction) of chaotic
mixing.

We consider a Hamiltonian flow with 1.5 degrees of free-
dom which depends on a set of parameters A € R™,

=)V ¥(r,z;N),
where r=(x,y) and Jl=(01_01). In order to analyze the linear
stability properties of the associated periodic orbits, we also
consider the Jacobian J'(r) which evolves according to the
tangent flow written as [39]

d
d—tJ’(r) = VAW (r,;;N)/, 9)

where J° is the two-dimensional identity matrix and V2W is
the Hessian matrix (composed of second derivatives of ¥
with respect to its canonical variables). For a given periodic
orbit with period 7, the linear stability properties are given
by the spectrum of the two-dimensional monodromy matrix
JT. These properties can be synthetically captured in
Greene’s definition [40,41] of the residue

2—trJ’
T4

s

since det J'=1. In particular, if R € ]0, 1[, the periodic orbit
is elliptic; if R<<0 or R>1 it is hyperbolic; and if R=0 and
R=1, it is parabolic.
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The residues of a set of well-selected periodic orbits
provide—through linear stability analysis—information to
detect the enhancement as well as the reduction of chaotic
mixing [32,42]. The actual change of dynamics must be
checked a posteriori by a nonlinear stability analysis (a
Poincaré section for instance). The residues are used to dis-
card regions in parameter space where large elliptic islands
are present.

For this purpose, an alternative strategy is to use a “brute
force” method and scan a whole range of physically relevant
parameters, analyze transport and mixing properties (by a
Poincaré map inspection, for instance), and conclude on a
domain of parameters where optimal mixing is achieved.
Though it would be a complete analysis, this strategy is not
reasonable to adopt because of the high number of cases to
consider and also the computer time it takes to analyze a
single case.

In order to circumvent these difficulties we choose to con-
sider the residue method described in this section and follow
in parameter space the stability of a well selected set of pe-
riodic orbits. Indeed due to the Hamiltonian nature of passive
particles, one can expect a direct correspondence between
nonmixing regions in physical space and islands of stability
in phase space. The higher the period of the island, the
smaller is its size, hence by following the linear stability of
elliptic periodic orbits with small period in parameter space,
one should be able to define a potential optimal mixing re-
gion for which these orbits are unstable and associated with
a mixing enhancement. Once this set of main periodic orbits
has been defined by close inspection of several situations, the
mixing region is obtained by looking at the bifurcation
curves in parameter space, e.g., the set of parameters such
that the residue is equal to 1 [32]. We will show in the next
section how to combine the creation of transport barriers and
the residue method in a particular example of stream func-
tion given by Eq. (1).

III. ACHIEVING TARGETED MIXING IN AN ARRAY OF
VORTICES

The stream function given by Eq. (1) models a cellular
flow consisting of alternating vortices. If we restrict our-
selves to y € [0, 7], we have a channel of alternating vortices
with slip boundary conditions. From the Hamiltonian per-
spective, the advection of passive tracers is given by Eq. (4).
Since the flow is steady, trajectories coincide with the fluid
streamlines depicted in Fig. 2(a).

Few basic facts explain the structures of the dynamics:
Boundary conditions given in y=0 and y=m constitute in-
variant curves. The system is 2 periodic in the x direction,
i.e., along the channel. The system has hyperbolic fixed
points located at x=mm for m € 7 and y=0 or y=m. These
points are joined by vertical heteroclinic connections for
which the stable and unstable manifolds coincide corre-
sponding to roll boundaries, at the origin of the cellular
structure of the flow.

In order to obtain chaotic advection for two-dimensional
flows, one must perturb the flow by a time-dependent forc-
ing. For example, one can periodically force the roll patterns
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FIG. 2. (a) Streamlines at /=0 and and (b) Poincaré section of
the stream function (10). The parameters are w=1 and €=0.8.

to oscillate in the x direction [21], in which case the stream
function reads

W, (x,y,t) = sin(x + € sin wt)sin y, (10)

where f(x,y,f)=€sin wt acts as a perturbation. The param-
eter € and w are, respectively, the amplitude and the angular
frequency of these lateral oscillations. The barriers (hetero-
clinic connections between the hyperbolic periodic orbits)
are broken under the perturbation f, which cause the passive
particles to undergo chaotic advection along the channel
[43].

The streamlines corresponding to the stream function W,
given by Eq. (10) are depicted in Fig. 2(a). We observe that
the structures are essentially the same as those of the stream
function W, given by Eq. (1). However, the periodic forcing
now drives back and forth the roll patterns in the x direction
with a period 27/w. The surfaces y=0 and y=m are left
invariant by the perturbation and the hyperbolic orbits persist
on these surfaces. The Poincaré section for w=1 and €=0.8
[see Fig. 2(b)] shows how passive particles are spreading
along the channel. Particle transport from roll to roll is
greatly enhanced. However, an unmixed area characterized
by regular trajectories is still present at the center of each
vortex: It is composed of invariant tori of the dynamics. Con-
sequently, though diffusion has appeared in the system due to
the time-dependent perturbation, some regular patterns are
persistent. Note that increasing the amplitude € does not
make them disappear; in particular, in the limit of large €
(with o fixed), the system will be integrable as well.

A. Building transport barriers

In what follows, we propose to adjust the time periodic
forcing as explained in Sec. II A. First we notice that
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Vo (m,y)=0 for any y € [0, 7] and all m e Z. We apply the
construction of the perturbation with ¢(y)=0 [or equiva-
lently ¢(y)=2m]. In Eq. (7), we choose ®(f)=e€ sin wr
which gives the perturbation

f(y,0) = esin ot + 0! cos yC(wt), (11)

where

1
Ct)=T"sin(esinr)=-2 E ——Tons1(€)cos(2n + 1)1,
=0 2n+1

(12)

and 7, (for n € N) are Bessel functions of the first kind. In
the numerics, we truncate the sum (12) to five modes. Very
similar results are obtained with a higher number of modes.

We notice that since the stream function is still 27 peri-
odic in the x direction by construction, the invariant surface
which has been created around x=0 is also translated around
2mar, m € 7.. The equations of these transport barriers along
the x direction are

x=2mm—w ' cos yCwt), (13)

for all m € Z. Notice that these barriers exist for arbitrary
values of @ and e. Each of these barriers are heteroclinic
connections between two hyperbolic periodic orbits,

x(f)=2mm—w'Cwr) aty=0,

x(t) =2mm+w 'Clwt) aty=m,

which move in opposite directions. Furthermore, the top and
bottom boundaries of the channel remain invariant. This
comes from the fact that the perturbation given by Eq. (11) is
only applied in the x term of W,

Figure 3(a) depicts the streamlines of the stream function,

W.(x,y,t) = sin[x + € sin wf + w ™! cos yC(w?)]sin y,
(14)

at =0 for w=1 and €=0.8. We notice that the displacement
of the rolls remains periodic and parallel to the x direction
with an additional oscillating shear. The Poincaré section de-
picted on Fig. 3(b) reveals the dynamics of tracers which is
very different from the one given by the stream function ¥,
given by Eq. (10) [see Fig. 2(b)]. The main differences are
that barriers suppressing long-range chaotic transport along
the channel are restored around x=0 (mod 27) (bold curves),
and that efficient mixing is achieved within the cell confined
by two barriers. We observe that passive particles appear to
invade the whole confined cell until the fluid is apparently
fully mixed; most of the regular trajectories observed for the
stream function W, are broken by the perturbation.

In Fig. 4, a numerical simulation of the dynamics of a dye
of tracers in the fluid is shown. The left-hand column depicts
the dynamics of tracers for the stream function (10). The
right-hand column shows the mixing of a dye within a cell
delimited by two barriers created by the stream function
(14). We see that the scattering of the dye, which leads to
mixing, occurs through a combination of stretching and fold-
ing of the dye in both cases.
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FIG. 3. (a) Streamlines at =0 and (b) Poincaré section of the
stream function (14). The parameters are w=1 and €=0.8.

B. Mixing analysis: Local Lyapunov exponent and mean
recurrence time analysis

As the absence of the regular islands from the Poincaré
sections does not guarantee the homogeneity of mixing, the
study of local properties of mixing in phase space may pro-
vide extensive information. For this purpose we consider two
different types of analysis, namely the Lyapunov map and
the mean recurrence time. Both analysis are performed
within the space of initial conditions.

First, in order to get insight into the action of the pertur-
bation on the local stability properties of the system, we
compute the Lyapunov map. This method provides local in-
formation in phase space. It has been introduced to detect
ordered and chaotic trajectories in the set of initial condi-
tions. It associates a finite-time Lyapunov exponent v with an
initial condition (xy,y,) at r=0. Let us consider the tangent
flow (9), and define the maximum finite-time Lyapunov ex-
ponent by integrating the flow and the tangent flow over
some time 7 starting with some initial condition (x,y,):

V(Xo,y(), 7) = %_ 1n|)\max(x07y0v 7],
where A .«(X0,Y0, 7) is the largest (in norm) eigenvalue of J”
(one can also use the eigenvalue of J7J7 where J™ is the
transposed matrix of J7).

From the inspection of the map (xy,yq)— v(xg,yq,7) for
some given time 7, one distinguishes the set of initial condi-
tions leading to regular motion associated with a small finite-
time Lyapunov exponent, from the chaotic ones with larger
finite-time Lyapunov exponents. Hence, this map reveals the
phase space structures where the motion of tracers is trapped
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FIG. 4. Numerical simulation
of the dynamics of a dye at t=4T,
t=6T, t=18T, and T=27 (from
top to bottom): Left-hand column
for the stream function (10) and
right-hand column for the stream
function (14). The parameters are
w=1 and €=0.8.

on invariant tori, i.e., they highlight islands of stability lo-
cated around elliptic periodic orbits. Mixing regions are
characterized by high values of their finite-time Lyapunov
exponents.

Figure 5 represents the Lyapunov maps for the dynamics
of tracers given by the stream function (14) for w=1.67 and
€=0.63 (upper panel) and for w=1 and €=0.8 at a time T
=2007r. The dark regions are characteristic of small values of
the Lyapunov exponent. We notice that Fig. 5 (upper panel)
shows small remaining islands which are barely noticeable in
the Poincaré section (see Fig. 3 of Ref. [33]). For mixing
studies, the Lyapunov diagnostic seems to be an appropriate
tool to reveal small nonmixing regions. These regular re-
gions have disappeared for w=1 and €=0.8 (lower panel).
However, the Lyapunov map is not able to identify the trans-
port barriers which means that locally near the barriers, the
motion is as chaotic as inside the cell.

As seen above, by looking at the Lyapunov map, one can
infer local mixing properties of the flow. However one can
notice that since the created barrier is a separatrix and not a
KAM torus as, for instance, in Ref. [31], the existence of the

barrier cannot be detected by the Lyapunov map. To comple-
ment this analysis, we consider a second diagnostic namely a
recurrence time analysis. An interesting property of return
time distributions stems from the fact that they are known to
be sensitive both to local and global dynamical properties of
phase space. For instance, being in the neighborhood of a
hyperbolic periodic orbit versus an elliptic one should affect
the distribution [44]. Therefore, the distribution should be
affected if computed in the neighborhood of a separatrix, or
if trapped within a regular region. Since we have already
analyzed the local stability properties of the flow by comput-
ing the Lyapunov map, we will only consider the average
first return time and define a scalar field 7(x,y) in the space
of initial conditions. One can indeed assume that if near a
given point (xy,y,) with positive v(x,y,) the average return
time 7(xg,y,) is large, then a dye of fluid would explore a
large part of phase space and so it would be best to drop the
dye in its neighborhood, than in some other point with simi-
lar v but a smaller 7.

Typically when analyzing return time statistics from a nu-
merical perspective, one defines a small area I" in phase
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X

FIG. 5. Lyapunov maps for the dynamics of tracers given by the
stream function W, given by Eq. (14) for w=1.67 and €=0.63 (up-
per panel) and for w=1 and €=0.8 (lower panel) at a time T
=2007.

space and compute a distribution of return times of trajecto-
ries leaving the area. On the one side due to the fact that, for
Hamiltonian systems with finite phase space, the average re-
turn time is finite and scales as 1/I" (Kac’s lemma), one must
be cautious not to take I too small in order to carry long
enough simulations and capture enough events to build a
characteristic distribution. On the other hand, return time dis-
tributions are supposed to be computed for I'— 0. For the
considered flow, due to symmetries we consider [0, 7]
X[0,] as the space of initial conditions which has been
divided regularly in 2500 small squares. For each square, the
mean return time has been computed using two trajectories
computed for 10° periods. Given the size of I, we collect for
each cell about 300 events. The results are presented in loga-
rithmic scale in Fig. 6. The parameters have been chosen
identical to the ones used in Fig. 5. In contrast to the
Lyapunov map, one sees that this diagnostics finds the bar-
riers (region with long return times). For w=1.67 and €
=0.63 (upper panel), one can also see small regions with
quite low return times: They correspond to small regular is-
lands as mentioned previously. The small return time regions
have disappeared for =1 and €=0.8 (lower panel).

Hence, in order to get an accurate picture of the mixing
properties of the cell, one must combine the information of
both the local Lyapunov exponent and the local average re-
turn time, for example, by computing the scalar field
v(xg,v0) X (X0, v0). Indeed this map shall give us informa-
tion on good mixing regions, and provide as well the location
of where to drop initially the dye to achieve a faster homog-
enization and mixing.

C. Robustness

We have identified a family of perturbations which, while
keeping the cellular structure of the flow, enhance consider-
ably mixing properties within the cells. The perturbations
have been constructed for a very specific flow; hence a natu-
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FIG. 6. Mean recurrence time in initial condition space of trac-
ers given by the stream function W, given by Eq. (14) for
=1.67 and €=0.63 (upper panel) and for w=1 and €=0.8 (lower
panel). Initial conditions space is divided into 100X 50 cells. Tra-
jectories are computed for ~10° periods, time steps are dr=T/200.

ral question arises in practical situations: Whether or not the
considered perturbed system is robust with respect to small
changes or errors in the applied perturbation. Indeed robust-
ness is a key concern in order for an experimental setup
using this type of perturbation. Below we analyze robustness
with respect to four factors: The truncation of the time series
giving the time dependence of the perturbation, the slip
boundary conditions, three-dimensional effects, and molecu-
lar diffusivity.

1. Truncation of the series

From the experimental perspective we may expect some
difficulties in implementing the whole series C(f) given by
Eq. (12). One may wonder how the barrier and mixing prop-
erties are affected when one truncates the series and retain
for instance only the first term of the perturbation term (12),
meaning only one mode is used for the perturbation, C, is
replaced by —2.7,(€)cos r. Figure 7 represents the plot of
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FIG. 7. Functions C(z) (solid line) and —2.7,(€)cos ¢ (dotted
line) for 1 €[0,27] and €=0.8.

these two functions for w=1 and €=0.8. The small discrep-
ancy between both functions might affect significantly the
transport barriers since it is well known that heteroclinic or-
bits are very sensitive to perturbations and are generically
broken by an arbitrarily small perturbation.

Trajectories of passive particles with a dynamics given by
the stream function

‘I’f,“)(x,y) = sin[x + € sin wf — 20! 7;(€)cos wt cos y]sin y,
(15)

are displayed in Fig. 8. One can see that the barrier is leaking
while mixing properties do not seem to be affected signifi-
cantly. One must notice that given the time length and the
amount of passive particles considered, the leak is small. The
truncated series is still achieving a good “targeted mixing.”

2. No-slip boundary conditions

If one wants to take into account the thin boundary layers
present on the boundaries of the channel, it amounts to con-
sider that the fluid is confined between the two surfaces y
=0 and y=m with no-slip boundary conditions. In this case,
the stream function is modified into

20

FIG. 8. Poincaré section computed with the trajectories of 1000
passive tracers and dynamics given by the stream function (15). The
parameters are w=1, €=0.8. The integration time is 1000 periods.

PHYSICAL REVIEW E 76, 046217 (2007)

FIG. 9. Poincaré section of the perturbed stream function (18).
The parameters are w=1 and €=0.8. The integration time is 1000
periods.

W(x,y) =sin xW(y), (16)

where no-slip boundary conditions x=y=0 at y=0 and y
= are obtained with

W(y) = cos(qy) — A, cosh(g,¥)cos(g,y)
+ A, sinh(g,y)sin(¢,y), (17)

with  y=y/m-1/2, ¢¢=3.973639, ¢,=5.195214, ¢,
=2.126 096, A;=0.061 516 64, and A,=0.103 887 (see Ref.
[45]). In this setting the resulting streamlines of the unper-
turbed stream function (16) are very similar to the ones in
Fig. 2(a) with the difference that the velocity vanishes at the
top and bottom of the channel.

In order to test the effect of the proposed perturbation (11)
on the stream function (16), we consider the following per-
turbed stream function:

W (x,y,t) = sin[x + € sin wt + @™ cos yC (wt) |W(y).
(18)

Note that the no-slip boundary conditions are maintained at
y=0 and y=m. A Poincaré section for the stream function
(18) is displayed in Fig. 9 for w=1 and €=0.8. The barriers
are broken and we observe long-range chaotic transport of
passive particles along the channel. However, the mixing
properties are maintained in the major part of the channel,
except for some areas where some very small regular regions
remain.

Nevertheless, the exact perturbation of the stream func-
tion (16) can be derived following the method developed in
Sec. IT A. It gives the following stream function:

W.(x,y,1) = sin[x + € sin ot + 0 ' W (y) C(wt) |W(y),
(19)

which preserves the no-slip boundary conditions at y=0 and
y=r. The resulting Poincaré section depicted on Fig. 10, for
w=1 and €=0.8, shows, as in the case of Fig. 3(b), that the
stream function (19) keeps the transport barriers and the mix-
ing properties.
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FIG. 10. Poincaré section of the stream function (19). The pa-
rameters are w=1 and €=0.8.

3. Three-dimensional effects

If the flow is bounded, depending on the size of the
boundary layers and the fluid extension in the third direction,
nonuniform vorticity can give rise to a secondary instability
leading to a three-dimensional flow (Ekman pumping).
Hence, for the considered perturbed flow, we may need to
take into account the weakly three-dimensional case, which
may be given by the empirical flow (see, for instance, [46])

X=—sinxcosy+ € sin 2x sin z,
y =cos X siny + € sin 2y sin z,

7 =2¢; cos z(cos 2x + cos 2y). (20)

Note that the strength of the third component of the flow is
characterized by e;.

In order to study how well the two-dimensional barrier
fares in this three-dimensional flow, we apply the perturba-
tion given by Eq. (11) to the right-hand side of Eq. (20). The
perturbed system is then given by

X =—sinx, cos y + € sin 2x; sin 7 + @' C(wt)cos x, sin® y,
Yy =cos X, siny + € sin 2y sin z,

7 =2¢ cos z(cos 2x, + cos 2y), (21)

where x,=x+e€sin wt+ ™! cos yC(wt). We notice that an

additional term has been added to X in order to ensure a
divergence free field.

Keeping a two-dimensional point of view of the system
(21), we visualize the projections in the (x,y) plane of the
position of passive tracers. When considering €;=0.005 and
4 10* passive particles at time t=10T, where T=2m, an
effective barrier remains as it is shown in Fig. 11(a) and
mixing properties are not affected, but we observe some ad-
vected particles which escape from the cell. However as de-
picted in Fig. 11(b), when the integration time is t=100T (for
the same value of €; and number of particles), the barrier still
influences the motion but leaks since a more significant num-
ber of particles get through these barriers.

4. Molecular diffusivity

Finally, we have up to now considered ideal passive trac-
ers, which are not subject to any molecular diffusivity, which

PHYSICAL REVIEW E 76, 046217 (2007)

Yo 5 0 5 10 15

(b)

FIG. 11. Projection of trajectories of the system (20) for w=1,
€=0.8, and €,=0.005. (a) r=10T; (b) t=100T.

may be a good approximation for high Peclet numbers. How-
ever, it is likely that for any finite molecular diffusivity the
barrier will leak. In order to illustrate this phenomenon, we
consider that tracers are actually subject to a Langevin equa-
tion associated with the stream function W, given by Eq.
(14),

.0V, .Y,
X=- E +b. (1), y= g +by(t), (22)

where b,(t) and b(t) are two independent &-correlated white
noises, with zero mean and a given amplitude u. Numerical
results are displayed in Fig. 12, where u=4X 1072 (which
corresponds to Peclet number of Pe=600), w=1, and €
=0.8. In order to avoid crossing across the “walls” y= and
y=0, we took by:O.

One can see that for this type of Peclet values, the trans-
port barrier is indeed leaking, and in fact the truncation of
C (1) does not affect how much the barrier leaks.

In summary the robustness of the proposed perturbation in
different settings has been investigated. One may infer that
the most drastic effects are induced by boundary conditions.
On the other hand, provided that the correct perturbation is
computed, one concludes that if three-dimensional effects are
weak and Peclet number is high enough, a truncation to the
first term of the series C(7) is sufficient, and actually imple-
menting more terms seems useless.
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X

FIG. 12. Trajectories of 1000 passive tracers given by Eq. (22).
(Top) Local density of tracers. (Bottom) The parameters are u=4
X 1072 (Peclet number Pe~600), w=1 and €=0.8. The integration
time is 1000 periods.

D. Targeted mixing regimes

It was shown in Sec. II A that a perturbation allows one to
localize tracers into a finite volume of phase space. However,
depending on the values of the parameters of the perturbation
(w,€) in Eq. (14), some regular islands may exist and pre-
vent complete mixing inside the cell. In this section we pro-
pose to identify the domain of parameters (if any) such that
these islands do not exist and the cell become fully mixing.

This domain in parameter space can be determined by
analyzing the linear stability of a few periodic orbits of the
system as discussed in Sec. II B. These orbits are those with
low rotation numbers, around which the resonant islands or-
ganize. Indeed, an island is organized around a central ellip-
tic orbit: If the latter were to turn hyperbolic, the dynamics
might become (locally) chaotic, since generically chaos is
expected in the neighborhood of hyperbolic orbits by an in-
finite number of intersections between its stable and unstable
manifolds. In order to monitor these orbits, we use a scalar
indicator of linear stability, such as the residue (see Sec.
II B). The fully mixing regime will then correspond to the
residues of selected periodic orbits being below 0 or above 1.
However, the change of linear stability of a given periodic
orbit might not change its nonlinear stability and still pre-
serve invariant tori in its neighborhood. This linear stability
analysis of periodic orbits must be completed by an a poste-
riori check to determine whether or not the regular island has
disappeared with the elliptic periodic orbit turning hyper-
bolic.

Let us consider the following range of parameters (w, €)
€[0.6,2.2]xX[0,2.2]. Inspection of several Poincaré sec-
tions reveals that in this range, it is essentially the nature of
eight periodic orbits which drives the mixing properties in-
side the cell. However, thanks to the symmetry with respect
to the point (x,y)=(m,/2), this set reduces to only four
orbits: Three of them have rotation number one, namely O,
0% and OP, while the fourth one, called O} has a rotation
number O=2. Depending on the value of the parameters
(w, €), these orbits can be elliptic—and create resonant is-
lands around them—or hyperbolic. In order to describe the

PHYSICAL REVIEW E 76, 046217 (2007)

nature of each of these four orbits for a given value of pa-
rameters, we use the nomenclature
[N(O,)N(03)N(O$)N(0%)], with N(O)=h if O is hyperbolic,
e if elliptic, and O if it does not exist. Let us precise that there
also exists a hyperbolic orbit with Q=2, called O3, which
forms a Birkhoff pair with O3. As it remains hyperbolic in
the range of parameters under consideration, it only provides
a better understanding of the bifurcation process, but does
not influence the mixing properties inside the cell.

Figure 13 depicts Poincaré sections for eight different val-
ues of parameters. These cases illustrate some possible mix-
ing regimes in the considered range of parameters. Figures
13(a)-13(d) (corresponding, respectively, to [#h00], [he00],
[eh00], and [ee00]) show how O; and O} can coexist in their
two forms (elliptic and hyperbolic), the full mixing regime
being reached when both are hyperbolic as in Fig. 13(a)
where it is [#h00]. We notice that when O, or Oj5 is elliptic,
the mixing is only prevented by the elliptic island. Only
small secondary islands are observed [for instance, in Fig.
13(c)]. This reinforces the importance of the considered set
of periodic orbits for mixing properties.

For smaller values of w, the orbits O¢ and OF may also
appear (if @=<1.2 and large € for Of, or o<1 and small €
for OIB), and their nature must to be taken into account, as
one can see in Fig. 13(e) [hhe0], where the hyperbolicity of
0, and Oj is not sufficient to ensure the full mixing inside
the cell, as Of is present in its elliptic form. Mixing can still
be obtained in the presence of OP, as can be seen in Fig.
13(f) which corresponds to the case [hhOh]. The opposite
case [ee0e] is depicted in Fig. 13(h) where all three orbits
are elliptic and almost no mixing occurs.

Finally, one can see in Fig. 13 which is [¢000] how for
large values of w (typically beyond 2), O no longer exists,
while O, stays elliptic: Furthermore, new resonant islands
have appeared, associated with new periodic orbits (with Q
=3 and Q=5 as shown). This illustrates the fact that in an-
other range of parameters, the dynamics may be guided by
higher order periodic orbits which are associated with
smaller islands.

A better insight in the bifurcation scheme can be gained
by varying only one parameter at a time. Figure 14 depicts
the residue curves associated with the orbits O, 0;, 03, Of,
and Of when varying € and keeping w constant. Two curves
have been computed in the intermediate frequency range w
=1.42 and w=1.67. In the intermediate regime, only three of
these five orbits exist, namely O; (plain line), O and O3
(respectively, upper and lower dashed-dotted lines).

For w=1.42 [see Fig. 14(a)] and for low €, both O, and
05 are elliptic: only partial mixing occurs. While O3 turns
hyperbolic as € is increased (around €=0.2), O, remains
elliptic until e=~0.4. O, turns from elliptic to hyperbolic by
merging with O3, according to the process

O5[h]+ O\[e] — O\[h]. (23)

This bifurcation does not happen just for this particular
choice of parameters, but appears to be fairly generic in this
range of parameters. For a better illustration of this process,
the behavior of the eigenvalues of the monodromy matrix
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FIG. 13. Poincaré sections in
the different domains of param-

associated with O, in shown in Fig. 15 (for w=1.67, similar
to the case w=1.42). The two eigenvalues, initially conju-
gated on the unity circle (i.e., O, is elliptic), encounter a
period doubling bifurcation when they reach 1, and leave the
unity circle: O, has turned hyperbolic. Then they are of the
form (\,1/\),\ € R*. Eventually, the phenomenon will re-
vert, the eigenvalues going back on the circle and O; to
ellipticity. For € between 0.4 and 0.9, the orbits O, 0;, and
O, are all hyperbolic, acknowledging a complete mixing.
Then, increasing further e, the orbit O;’ turns elliptic after
€~0.9, and hence mixing decreases. It remains so until it
merges with the hyperbolic O, at e=1.1, to give an elliptic
0, (parabolic at the transition), according to the scheme

Ojlel+0,[h] — O\[e]. (24)

Beyond e~ 1.4, the only remaining orbit, O, stays ellip-
tic.

For w=1.67 [see Fig. 14(b)], the dynamics is more regu-
lar: While bifurcation (23) still occurs, resulting in an hyper-
bolic Oy, the residue of 0; never crosses 1, which means that
the orbit stays elliptic. Around €=0.9, it merges with the
hyperbolic O, to give an elliptic O, according to the bifur-
cation (24). Beyond this point, O, will stay elliptic: Full
mixing cannot be achieved for such values of w.

Three other curves illustrate the behaviors at low fre-
quency, i.e., w=0.8 and w=0.58, and at a high frequency
w=2.08.

For w=0.8 [see Fig. 14(c)], the bifurcation scheme is
more complicated due to the presence of the orbit Of and OF
(respectively right and left dashed line). The orbits can either
exist in an elliptic or hyperbolic way, or not exist at all. The
two latter cases, combined with O; and O hyperbolicity, are
suitable for a fully mixing regime.

eters (w, €) for the stream function
(14). The stars, full circles,
squares, and triangles indicate, re-
spectively, the locations of Oy,
0f, OB, and 03. (a) w=1,€e=0.8;
(b) w=1.8,6=0.5; (¢) w=12,¢€
=0.2; (d) w=1.6,e=0.2; (¢) w
=0.58,e=1.25; (f) w=0.58,¢
=0.6; (g) w=2.1,e=0.25; (a) w
=0.63,€=0.01.

For low €, though O} turns hyperbolic very soon (at €
~0.05), OIB is elliptic until e= 0.2, when it disappears. How-
ever, because of the ellipticity of Oy, full mixing cannot oc-
cur until it also turns hyperbolic, at e=~0.3. Then complete
mixing is achieved until e~ 1.5, when Oj turns back elliptic,
soon followed by O; when they merge according to the bi-
furcation scheme (24). Note that around e~ 1.6, orbit Of
appears, but full mixing is no longer possible because of O,
ellipticity.

Then, for w=0.58, the bifurcation scheme is more intri-
cate due to the fact that 015 turns hyperbolic. For low e,
despite O3 and O, soon turn hyperbolic (at e=0.2 for the
latter), O remains elliptic until e~ 0.5, when its residues go
above 1: Full mixing is then achieved [see Fig. 13(f)], until
the orbit returns to ellipticity at e=0.65. However, it disap-
pears at €~0.7, and then only O, and Oj are present, in their
hyperbolic form; thus mixing is achieved anew. It remains so
until e~ 1.1, when Of comes into play, being elliptic. Fur-
thermore, it will also be hyperbolic (around e=2), but only
when O, has turned back to ellipticity: Mixing will not occur
any longer.

For large o [w=2.08, see Fig. 14(e)], the dynamics is
more regular. The orbits O3 and O3 do not exist, and the only
remaining orbit, O;, never encounters any bifurcation, and
stays elliptic. Complete mixing cannot be achieved in this
case either.

Now, instead of varying the amplitude € of the forcing, we
vary its frequency w and keep € constant. For €=0.8 [see Fig.
16(a)] and for w below 0.55, the orbit OF is hyperbolic as
well as O; and O3: The cell is fully mixing. Soon after O
turns elliptic at w=0.55, it disappears around w=10.57; the
remaining orbits are hyperbolic until O3 turns elliptic (@
~1.55). Finally, at o~ 1.8, the elliptic O} merges with the
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FIG. 14. Residue curves for
the stream function (14) as func-

tions of the amplitude e: The plain
line corresponds to the residues of
01, the dashed line corresponds to
the residues of Of, and the
dashed-dotted line corresponds to
the ones of O3 (upper curve) and
O; (lower curve). The dotted line
indicates the locations of the bi-
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hyperbolic O; [as described by the bifurcation (24)] to give
an elliptic O;: Only partial mixing is achieved.

For €=0.4 [see Fig. 16(b)], the situation is slightly differ-
ent: For low w, the orbit Of (plain line) is present and mostly
elliptic. Its residue is higher than 1 only in a small range of w
[around w=0.61, see the inset of Fig. 16(b)], and only this
small domain of w is suitable for complete mixing, since O,
and Oj are hyperbolic for small w. Then, for w=0.7, the
elliptic OIB disappears, and as long as O, (dashed line) and
05 (dashed-dotted line) are hyperbolic, the cell is still fully
mixing. Around w=1, O, turns elliptic and so mixing is only
partial. Moreover, when it turns back to hyperbolicity for
w=1.55, the orbit O3 soon becomes elliptic: The parameter
range available for complete mixing is small. Finally, O3
merges with the hyperbolic O, through the bifurcation (24),
leaving an elliptic O;: Full mixing cannot be achieved any
more.

Figure 17 summarizes the residue study with the domain
of ellipticity and/or hyperbolicity of these orbits. The do-
mains of parameters are noted with letters, in agreement with
the labeling of Fig. 13. The gray colored domain is the most
suitable for complete mixing, since O; and O3 are hyper-
bolic, while 0{3 and Of do not exist. The domain (f) would
also be suitable; however, in this range of parameters, new
orbits are born when e decreases.

IV. CONCLUSION AND PERSPECTIVES

Time-periodic perturbations are able to generate chaotic
mixing in two-dimensional channels. Optimal mixing is ob-

furcations. (a) w=142; (b) w
=1.67; (c) @=0.8; (d) @=0.58; (e)
w=2.08.

tained when all regular structures are broken by the pertur-
bation. We have shown here that this optimal mixing can be
obtained in a small domain of phase space by combining two
strategies: First, by constructing two transport barriers, con-
fining the fluid in a bounded region of the channel. Generi-
cally, it is expected that the motion inside this bounded cell is
a mixture of regular (nonmixing) regions and chaotic (mix-
ing) ones. Then, using the linear stability of a few selected
periodic orbits (represented by their residues) and the iden-
tification of bifurcations, we gave conditions on the param-
eters of the system (represented by the amplitude and the
frequency of the periodic forcing) such that a high mixing
occurs in the cell. We have shown that complete mixing is
expected in a large region of parameter space. The mixing
properties have been a posteriori analyzed and confirmed by
computing a finite time Lyapunov map of initial conditions

1

0.5

log I\l
o

0 0.5 1

FIG. 15. Modulus of the eigenvalues of orbit O; for the stream
function (14) with w=1.67.
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FIG. 16. Residue curves for the stream function (14) as func-
tions of the frequency w: The plain line corresponds to the residues
of Oy, the dashed line corresponds to the residues of Of, and the
dashed-dotted line corresponds to the ones of O3 (upper curve) and
O3 (lower curve). The dotted lines indicate the locations of the
bifurcations. (a) e=1.42; (b) €e=0.4.

space. Moreover, a strategy for placing an initial drop of dye
has been proposed by combining the information of the finite
time Lyapunov map with a map in initial conditions space of
average return times. Finally, we have shown that the strat-
egy we developed is robust to several effects like truncations
of the Fourier series giving the exact shape of the perturba-
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FIG. 17. Mixing domains for the stream function (14) in param-
eter space: The letters (a)—(h) refer to mixing regimes as depicted in
the typical Poincaré sections in Fig. 13. The gray domain represents
the expected mixing regime where the studied periodic orbits are all
hyperbolic (or nonexistent). The plain curve is associated with the
orbit O; where its residue is equal to 1; the dashed curve is associ-
ated with the orbit O}; the upper dashed-dotted line bounds the
domain of existence of Of (it is elliptic above and does not exist
below), while the lower dashed-dotted line delimits the one of O
(existing below but not above). While the latter orbit is mainly
elliptic, the dotted line encloses the small domain where it is
hyperbolic.

tion, three-dimensional effects, and molecular diffusion.
When no-slip boundary conditions apply, it must be taken
into account in the computation of the perturbation since the
restored transport barriers are not robust without this, al-
though the good mixing properties do not seem to be af-
fected.
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